Monday, February 11: Interval estimates

Estimation of parameters

A common problem in statistics: we are given a sample (an independent and identically distributed set of random variables X_1, X_2, \ldots, X_n). Each individual distribution is known to be from a particular family but one of its parameters is unknown. We observe these random variables once and obtain values x_1, x_2, \ldots, x_n. What do these observations tell us about the value of the unknown parameter in the distribution of X?

One thing we might be able to do is to compute a confidence interval for the parameter, an idea that we now explore.
Monday, February 11: Interval estimates

A random interval is an interval of \mathbb{R} whose endpoints are random variables

Example Let $X \sim \chi^2(16)$. Then the interval $(X, 3.3X)$ is a random interval. What is the probability that $26.3 \in (X, 3.3X)$? Also, what is the expected value of the length of the interval?
Monday, February 11: Interval estimates

We have that $X < 26.3 < 3.3X$ if and only if $X < 26.3$ and $X > 26.3/3.3 \approx 7.97$.

If $F(x)$ is the cumulative distribution function for a $\chi^2(16)$ distribution, then the probability is $F(26.3) - F(26.3/3.3)$, which is 0.8998.

For the expected value of the length, we have

$$E(3.3X - X) = E(2.3X) = (2.3)(16) = 36.8.$$
Monday, February 11: Interval estimates

Example Suppose that \(\bar{X} \) is the sample mean of an independent and identically distributed set \(X_1, \ldots, X_n \), each with distribution \(N(\mu, \sigma) \), where \(\sigma \) is known but \(\mu \) is unknown.

What is

\[
P \left(\mu \in \left(\bar{X} - 2 \frac{\sigma}{\sqrt{n}}, \bar{X} + 2 \frac{\sigma}{\sqrt{n}} \right) \right) \]
Monday, February 11: Interval estimates

By the smaller version of the central limit theorem,

\[\bar{X} \sim N(\mu, \sigma/\sqrt{n}), \]

which means that

\[Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1). \]

This tells us that if \(F(z) \) is the cumulative distribution function of a standard normal distribution, then

\[P(-2 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 2) = F(2) - F(-2) = 0.9544997, \]

which we could nearly guess from the 66-95-99.7 Rule.
Monday, February 11: Interval estimates

Solving the above gives that

\[
P \left(\mu \in \left(X - 2 \frac{\sigma}{\sqrt{n}}, X + 2 \frac{\sigma}{\sqrt{n}} \right) \right) = F(2) - F(-2) = 0.9544997.
\]

Note that the original question really boils down to the question: what is the probability that the normally distributed random variable \(X \) will lie within 2 of its standard deviations from its mean?
Definition A 95% confidence random interval for a parameter θ is a random interval J with the property that $P(\theta \in J) = 0.95$. In this context, 0.95 is called the confidence level (and it need not be 0.95, although that is most common).

A 95% confidence interval for a parameter θ is an observation of a 95% confidence random interval for a parameter θ.

Let’s reinterpret the example from yesterday...
Example Suppose that \overline{X} is the sample mean of an independent and identically distributed set X_1, \ldots, X_n, each with distribution $N(\mu, \sigma)$, where σ is known but μ is unknown.

To find a 95% confidence random interval for μ, find z^* with the property that $F(z^*) - F(-z^*) = 0.95$, where $F(x)$ is the cumulative distribution function of a standard normal distribution.

Then

$$P \left(\mu \in \left(\overline{X} - z^* \frac{\sigma}{\sqrt{n}}, \overline{X} + z^* \frac{\sigma}{\sqrt{n}} \right) \right) = F(z^*) - F(-z^*) = 0.95,$$

so

$$\left(\overline{X} - z^* \frac{\sigma}{\sqrt{n}}, \overline{X} + z^* \frac{\sigma}{\sqrt{n}} \right)$$

is a 95% confidence random interval for μ.

Tuesday, February 12: Interval estimates
Note that this is a 95% confidence random interval for μ, not the 95% confidence random interval for μ

There are many (infinitely many) 95% confidence random intervals for μ; this is simply one of them

Also note that it is always for a parameter — it must be a confidence random interval for something, not just a confidence random interval
Tuesday, February 12: Interval estimates

Where do we find z^*? Drawing the picture of a standard normal probability density function and shading the desired area that should be 0.95, we find that if $Q(p)$ is the quantile function of a standard normal distribution, then

$$z^* = Q(0.975) \approx 1.959964.$$

This z^* is called (in my own terminology) the 0.95 central quantile for a standard normal distribution.
Tuesday, February 12: Interval estimates

In real-world applications, it is unlikely that we would ever know σ without knowing μ (why?).

What might we use instead of σ to obtain a confidence random interval for μ?
Tuesday, February 12: Interval estimates

How about S^2? Well, we have discussed that

$$\frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \quad \text{and} \quad nS^2 / \sigma^2 \sim \chi^2(n - 1),$$

and that these two are independent (which may be the hardest part to show)

This means that

$$T = \frac{(X - \mu) / (\sigma / \sqrt{n})}{\sqrt{nS^2 / ((n - 1)\sigma^2)}} \sim t(n - 1).$$

Simplifying gives that

$$T = \frac{X - \mu}{S / \sqrt{n - 1}} \sim t(n - 1).$$
Tuesday, February 12: Interval estimates

Just as $Z = (X - \mu) / \sigma$ is the *standardized* version of $X \sim N(\mu, \sigma)$, the random variable

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n - 1}}$$

is called the *studentized* version of X

The standardized version of X (with σ) has a standard normal distribution

The studentized version of X has a $t(n - 1)$ distribution
Tuesday, February 12: Interval estimates

Example Suppose that \bar{X} is the sample mean of an independent and identically distributed set X_1, \ldots, X_n, each with distribution $N(\mu, \sigma)$, where σ and μ are unknown.

To find a 95% confidence interval for μ, find t^* with the property that $F(t^*) - F(-t^*) = 0.95$, where $F(x)$ is the cumulative distribution function of a $t(n-1)$ distribution.

Then

$$P \left(\mu \in \left(\bar{X} - t^* \frac{S}{\sqrt{n-1}}, \bar{X} + t^* \frac{S}{\sqrt{n-1}} \right) \right) = F(t^*) - F(-t^*) = 0.95,$$

so

$$\left(\bar{X} - t^* \frac{S}{\sqrt{n-1}}, \bar{X} + t^* \frac{S}{\sqrt{n-1}} \right)$$

is a 95% confidence interval for μ.
Tuesday, February 12: Interval estimates

This t^* is called (in my own terminology) the 0.95 central quantile for a $t(n - 1)$ distribution.
Wednesday, February 13: Interval estimates

What if we want to compare two means? One way is to find a confidence random interval for the difference between the two: let

- X_1, \ldots, X_n and Y_1, \ldots, Y_m be independent samples,
- the distribution of each X_i be $N(\mu_1, \sigma)$ and of each Y_i be $N(\mu_2, \sigma)$ (with the same σ),
- the sample means be \bar{X} and \bar{Y}, and the sample variances be S_1^2 and S_2^2.

Note that the four random variables in the last item are independent.

What can we say about the distribution of $\bar{Y} - \bar{X}$?
Wednesday, February 13: Interval estimates

By various previous results, we know that

\[
Y - X \sim N(\mu_2 - \mu_1, \sqrt{\sigma^2 / n + \sigma^2 / m})
\]

This means that

\[
\frac{(Y - X) - (\mu_2 - \mu_1)}{\sqrt{\sigma^2 / n + \sigma^2 / m}} \sim N(0, 1).
\]
Wednesday, February 13: Interval estimates

Also, $nS^2_1/\sigma^2 \sim \chi^2(n - 1)$ and $mS^2_2/\sigma^2 \sim \chi^2(m - 1)$, and they are independent (which needs checking), so their sum satisfies

\[
\frac{nS^2_1 + mS^2_2}{\sigma^2} \sim \chi^2(n + m - 2)
\]

This means that

\[
T = \frac{(\bar{Y} - \bar{X}) - (\mu_2 - \mu_1)}{\sqrt{\frac{nS^2_1 + mS^2_2}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m} \right)}} \sim t(n + m - 2).
\]

The denominator is called the standard error, a term that we will define later:

\[
SE \sim \sqrt{\frac{nS^2_1 + mS^2_2}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m} \right)}.
\]
Wednesday, February 13: Interval estimates

As per the usual method, we find that a 95% confidence random interval for $\mu_2 - \mu_1$ is

$$(\overline{Y} - \overline{X}) - t^*SE, (\overline{Y} - \overline{X}) + t^*SE),$$

where t^* is the 0.95 central quantile of a $t(n + m - 2)$ distribution.