Let V be an n-dimensional real vector space, let $a \in \mathbb{R}$, and let $B, C \subseteq V$ with

$$B = \{v_1, v_2, v_3, \ldots, v_n\},$$
and
$$C = \{v_1, v_2 - av_1, v_3, \ldots, v_n\}.$$

Prove that if B is a basis for V, then C is a basis for V. (In case the pattern in the “…” isn’t clear, B and C differ only in their second vector.)