You are wondering whether the directed reading activities improve aspects of student reading abilities, as measured by the Degree of Reading Power (DRP) test. The data set that you have available to investigate this is at

http://dasl.datadesk.com/data/view/39

Note that this experiment could have been improved if student reading ability could have been measured somehow before the treatments were applied, but perhaps practical considerations wouldn’t allow that.

Use the following commands in R to import the data, substituting the desired name of your data frame for myData:

```r
myData <- read.delim("http://dasl.datadesk.com/data/view/39", skip=211, nrow=44, header=FALSE)
names(myData) <- c("treatment", "score")
```

Answer the following questions about this data set.

1. What are the individuals being measured?

2. What characteristic does each variable measure, and what variable type is each variable (numerical, categorical, logical, etc.)?

3. How were individuals sampled for this data set? In particular, are the observations in this data set made independently?

4. From what population are individuals randomly drawn in this data set? This population tells you the scope of inference, or how widely your statistical inferences will extend.

5. Which variables are random variables? What is the random process behind each random variable?

6. Make simultaneous density plots of the observed values of Response grouped by Treatment, and explain what these density plots tell you.

7. Make simultaneous density plots of the residuals of the fitted model grouped by Treatment, and explain what these density plots tell you.

8. Generate a normal quantile plot of the residuals of the fitted model within both types of Treatment. (You should generate two separate plots.) Explain what these normal quantile plots tell you.

9. Report the results of a hypothesis test that addresses your question of interest. In doing so, state what type of test you conducted, the null and alternative hypotheses, the distribution of the test statistic under the null hypothesis, the value of the test statistic, the significance level, the p-value, and what this means in terms of statistical significance.

10. Give a point estimate and a 95% confidence interval for a parameter that addresses your question of interest. State clearly the parameter for which you computed a confidence interval.