Remember that the important part of all these problems is the explanation of your answer, not your answer itself. You will not receive anywhere near full credit for a correct answer unless you explain why your answer is correct.

1. On the graph paper provided, carefully draw the figure that the given “R” is sent to when \mathbb{R}^2 is reflected across the x axis. Do the same for a reflection across the y axis. (Be sure to label which is which.)

2. On the graph paper provided, carefully draw the figure that the given “R” is sent to when \mathbb{R}^2 is rotated about the origin by 90° counterclockwise. Do the same for a rotation about the point $(1, 2)$ by 45° clockwise. (Again be sure to label which is which.)

3. Let $T_1, T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ be translations by arbitrary directed line segments \vec{s}_1, \vec{s}_2 in \mathbb{R}^2.

 (a) What function is T_2T_1? (You should be able to express this as a single familiar function, rather than the composition of two functions.)

 (b) What function is T_1T_2? (You should be able to express this as a single familiar function, rather than the composition of two functions.)

4. Let $F_1, F_2 : \mathbb{R}^2 \to \mathbb{R}^2$ be reflections across arbitrary lines L_1, L_2 in \mathbb{R}^2.

 (a) What function is F_2F_1? (You should be able to express this as a single familiar function, rather than the composition of two functions.)

 (b) What function is F_1F_2? (You should be able to express this as a single familiar function, rather than the composition of two functions.)

5. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection across an arbitrary line L in \mathbb{R}^2, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be translation by an arbitrary directed line segment \vec{s} in \mathbb{R}^2.

 (a) What function is TF? (You should be able to express this as a single familiar function, rather than the composition of two functions.)

 (b) What function is FT? (You should be able to express this as a single familiar function, rather than the composition of two functions.)