We might wonder how much different masses Peanut M&Ms and Peanut Butter M&Ms have on average
Let’s estimate this...
We make the modeling assumption that these Peanut M&Ms were drawn at random from all the Peanut M&Ms in the world, and similarly for the Peanut Butter M&Ms. This is false, but we can comment on that further in our assessment at the end of the analysis. With this assumption, we proceed to compute confidence interval for the difference in mean masses...
Let X_1 be the random variable whose value is the mass of a Peanut M&M selected at random from all the Peanut M&Ms in the world. We denote the random variable mean of X_1 by $\mu[X_1]$.

Let X_2 be the random variable whose value is the mass of a Peanut Butter M&M selected at random from all the Peanut Butter M&Ms in the world. We denote the random variable mean of X_2 by $\mu[X_2]$.

Also, we define

$$\Delta \mu = \mu[X_2] - \mu[X_1]$$

As usual, we set the confidence level to $c = 0.95$.
We compute that our data set contains $n_1 = 153$ observations of X_1 and $n_2 = 201$ observations of X_2. For modeling purposes, we will assume that these observations are independent (although they may not be). We can view histograms of both of our samples. We note the shape, center, spread, and outliers of the histograms and investigate if we notice anything noteworthy.
2. Collect and inspect the data

<table>
<thead>
<tr>
<th>X1 (grams)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>30</td>
</tr>
<tr>
<td>3.0</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>10</td>
</tr>
</tbody>
</table>
2. Collect and inspect the data

![Histogram of X2 (grams) with frequency]

- **X2 (grams)**
 - 1.0
 - 1.5
 - 2.0
 - 2.5
- **Frequency**
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
 - 60
3. Single-number estimate

We define M_1 to be the sample mean of a 153-sample of X_1, and we define M_2 to be the sample mean of a 201-sample of X_2. As an estimator of $\Delta \mu$, we use the random variable

$$\Delta M = M_2 - M_1.$$
3. Single-number estimate

We denote the values of M_1 and M_2 for our particular $(153, 201)$-sample by m_1 and m_2, so the value of ΔM for our sample is

$$\Delta m = m_2 - m_1.$$

We compute that:

$$m_1 = 2.5977 \text{ grams},$$
$$m_2 = 1.7981 \text{ grams},$$

so

$$\Delta m = 1.7981 \text{ grams} - 2.5977 \text{ grams} = -0.7996 \text{ grams}.$$
To help us compute the standard error of ΔM, we define S_1 to be the random variable whose value is the sample standard deviation of a 153-sample of X_1, and S_2 to be the random variable whose value is the sample standard deviation of a 201-sample of X_2. By a mathematical theorem, the standard error of ΔM is:

$$
SE[\Delta M] = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}.
$$
4. Standard error

We denote the values of S_1 and S_2 for our particular sample by s_1 and s_2.

Then $\text{se}[\Delta M]$, the value of $\text{SE}[\Delta M]$ for our sample, is given by

$$\text{se}[\Delta M] = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

To find this, we first compute that:

$$s_1 = 0.3384 \text{ grams} \quad \text{and} \quad s_2 = 0.2706 \text{ grams},$$

so

$$\text{se}[\Delta M] = \sqrt{\frac{(0.3384 \text{ grams})^2}{153} + \frac{(0.2706 \text{ grams})^2}{201}} = 0.0334 \text{ grams}.$$
By a mathematical theorem, the distribution that we use to compute this confidence interval is

\[T[\min(n_1, n_2) - 1] = T[\min(153, 201) - 1] = T[152] \]

We use a \(T \) distribution calculator to compute that the central -quantile for a \(T[152] \) distribution is 1.9757.
6. Endpoints

The endpoints of a confidence interval for $\Delta \mu$ are given by

$$C_{\text{low}} = \Delta M - t \cdot SE[\Delta M] \quad \text{to} \quad C_{\text{high}} = \Delta M + t \cdot SE[\Delta M].$$

This means that our particular sample produces a confidence interval from

$$c_{\text{low}} = \Delta m - t \cdot se[\Delta M] \quad \text{to} \quad c_{\text{high}} = \Delta m + t \cdot se[\Delta M].$$

Putting in the values for these that we have computed, we have

$$c_{\text{low}} = -0.7996 \text{ grams} - (1.9757)(0.0334 \text{ grams}) = -0.8655 \text{ grams}$$

$$c_{\text{high}} = -0.7996 \text{ grams} + (1.9757)(0.0334 \text{ grams}) = -0.7337 \text{ grams}$$
We estimate that the average mass out of all the Peanut M&Ms in the world is \textbf{0.7996 grams} more than the average mass out of all the Peanut Butter M&Ms in the world, with a \textbf{95\%} confidence interval from \textbf{0.7337 grams} to \textbf{0.8655 grams}.

[Aside: notice how this has been rephrased in order to take into account the negative numbers.]
7. Report and assess

Of course, we should comment on the strengths and weaknesses of our test. One weakness is that these M&Ms are definitely not selected at random from all the Peanut M&Ms in the world. We should think about limiting our model in both space and time. Another weakness is that these M&Ms were not drawn independently either. We need to investigate how this might affect the validity of our conclusions.