2.5 Problems

1. Suppose you have a test statistic that is standard normally distributed under the null hypothesis H_0, and that you compute the test statistic’s value to be -2.43 for your data.

 (a) Compute the 2-sided P-value of the data.
 (b) Compute the 1-sided to the right P-value of the data.
 (c) Compute the 1-sided to the left P-value of the data.
 (d) Interpret your result in terms of evidence about the null hypothesis, using the traditional significance level $\alpha = 0.05$.

2. Repeat Problem 1, only for a test statistic whose distribution under the null hypothesis H_0 is a t distribution with 4 degrees of freedom. Continue to assume that the test statistic’s value is -2.43.

3. Suppose you have a test statistic that is standard normally distributed under the null hypothesis H_0, and that you compute the test statistic’s value to be 1.98 for your data.

 (a) Compute the 2-sided P-value of the data.
 (b) Compute the 1-sided to the right P-value of the data.
 (c) Compute the 1-sided to the left P-value of the data.
 (d) Interpret your result in terms of evidence about the null hypothesis, using the traditional significance level $\alpha = 0.05$.

4. Repeat Problem 3, only for a test statistic whose distribution under the null hypothesis H_0 is a t distribution with 11 degrees of freedom. Continue to assume that the test statistic’s value is 1.98.

5. Suppose you have a test statistic X that is normally distributed with unknown mean μ and standard deviation $\sigma = 0.74$, and that you have computed the value of X to be -2.43 for your data.

 (a) Find a level 0.95 confidence interval for μ.
 (b) Find a level 0.90 confidence interval for μ.

6. Repeat both parts of Problem 5, only now assume that σ is not known, but that the sample standard deviation is $s = 0.74$. The number of observations in the sample is 12 and the number of parameters used in describing μ is 1, so the number of degrees of freedom for the problem equals $12 - 1 = 11$. Continue to assume that the test statistic’s value is -2.43.