FUN WITH GAUSSIAN ELIMINATION!

In all of these problems, let V, W be finite-dimensional vector spaces, and let $T : V \to W$ be a linear transformation from V to W. Also, let B be a basis for V and C be a basis for W. The dimensions of V and W may be different in different problems.

On all problems, use Gaussian elimination to arrive at the reduced row echelon form of the matrix for T, and show each step in which you perform an elementary row operation.

1. Let

 $T_{CB} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2 \end{bmatrix}$.

 Find a basis for the image and the kernel of T.

2. Let

 $T_{CB} = \begin{bmatrix} 3 & 2 & 3 & -2 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & -1 \end{bmatrix}$ and $a_C = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \in W$.

 Find all vectors $x \in V$ satisfying $T(x) = a$.

3. Let

 $T_{CB} = \begin{bmatrix} 2 & 3 & 1 & 4 & -9 \\ 1 & 1 & 1 & 1 & -3 \\ 1 & 1 & 1 & 2 & -5 \\ 2 & 2 & 2 & 3 & -8 \end{bmatrix}$ and $a_C = \begin{bmatrix} 17 \\ 6 \\ 8 \\ 14 \end{bmatrix}$.

 (a) Find all vectors $x \in V$ satisfying $T(x) = a$.

 (b) Find a basis for the image and the kernel of T. (You have probably done most of this in the previous part, but I wanted to make sure that you knew which vector a you would be working with rather than making you redo your computations for this.)